Heavy Metal Ions(II) Sorption by a Cellulose-Based Sorbent Containing Sulfogroups

Author:

Nikiforova Tatiana1ORCID,Kozlov Vladimir2,Razgovorov Pavel3,Politaeva Natalia4ORCID,Velmozhina Ksenia4,Shinkevich Polina4,Chelysheva Valentina4

Affiliation:

1. Department of Food Technology and Biotechnology, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Avenue, 7, Ivanovo 153000, Russia

2. Department of Chemistry and Technology of Higher Molecular Compounds, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Avenue, 7, Ivanovo 153000, Russia

3. Institute of Civil and Transport Engineers, Yaroslavl State Technical University, Moskovsky Prosp., 88, Yaroslavl 150023, Russia

4. Institute of Civil Engineering, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg 195251, Russia

Abstract

This article concerns the effect of the chemical modification of short flax fiber on its sorption properties for heavy metal ions. The main purpose of the modification was to achieve the oxidation of flax cellulose with sodium metaperiodate to form dialdehyde cellulose. Additionally, the research shows the subsequent interaction of dialdehyde cellulose with 1-amino-8-hydroxynaphthalene-3,6-disulfonic acid and its transformation into a derivative capable of forming chelate complexes with heavy metal ions. Additionally, this article presents the results of equilibrium and kinetics studies of the sorption of Cu(II), Cd(II), and Fe(II) ions from aqueous solutions by primary and modified cellulose sorbents. SEM spectra indicate changes in the surface structure of the modified sorbents compared to the original one. IR spectra show the appearance of amino- and sulfogroups in short flax fibers in the process of their modification. The research revealed the efficiency of the method and the possibility of its use for the purification of aqueous solutions from heavy metal ions in industrial processes.

Funder

Peter the Great St. Petersburg Polytechnic University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3