A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States

Author:

Pinto-Bernal Maria J.ORCID,Cifuentes Carlos A.ORCID,Perdomo OscarORCID,Rincón-Roncancio MonicaORCID,Múnera MarcelaORCID

Abstract

Physical exercise contributes to the success of rehabilitation programs and rehabilitation processes assisted through social robots. However, the amount and intensity of exercise needed to obtain positive results are unknown. Several considerations must be kept in mind for its implementation in rehabilitation, as monitoring of patients’ intensity, which is essential to avoid extreme fatigue conditions, may cause physical and physiological complications. The use of machine learning models has been implemented in fatigue management, but is limited in practice due to the lack of understanding of how an individual’s performance deteriorates with fatigue; this can vary based on physical exercise, environment, and the individual’s characteristics. As a first step, this paper lays the foundation for a data analytic approach to managing fatigue in walking tasks. The proposed framework establishes the criteria for a feature and machine learning algorithm selection for fatigue management, classifying four fatigue diagnoses states. Based on the proposed framework and the classifier implemented, the random forest model presented the best performance with an average accuracy of ≥98% and F-score of ≥93%. This model was comprised of ≤16 features. In addition, the prediction performance was analyzed by limiting the sensors used from four IMUs to two or even one IMU with an overall performance of ≥88%.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3