Rule-Based Non-Intrusive Load Monitoring Using Steady-State Current Waveform Features

Author:

Shareef Hussain1ORCID,Asna Madathodika1ORCID,Errouissi Rachid1,Prasanthi Achikkulath1

Affiliation:

1. Electrical and Communication Engineering Department, United Arab Emirates University, Al Ain 15551, United Arab Emirates

Abstract

Monitoring electricity energy usage can help to reduce power consumption considerably. Among load monitoring techniques, non-intrusive load monitoring (NILM) provides a cost-efficient solution to identify individual load consumption details from the aggregate voltage and current measurements. Existing load monitoring techniques often require large datasets or use complex algorithms to obtain acceptable performance. In this paper, a NILM technique using six non-redundant current waveform features with rule-based set theory (CRuST) is proposed. The architecture consists of an event detection stage followed by preprocessing and framing of the current signal, feature extraction, and finally, the load identification stage. During the event detection stage, a change in connected loads is ascertained using current waveform features. Once an event is detected, the aggregate current is processed and framed to obtain the event-causing load current. From the obtained load current, the six features are extracted. Furthermore, the load identification stage determines the event-causing load, utilizing the features extracted and the appliance model. The results of the CRuST NILM are evaluated using performance metrics for different scenarios, and it is observed to provide more than 96% accuracy for all test cases. The CRuST NILM is also observed to have superior performance compared to the feed-forward back-propagation network model and a few other existing NILM techniques.

Funder

Asian Universities Alliance (AUA)-United Arab Emirates University (UAEU) joint research fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3