Auto-Tiler: Variable-Dimension Autoencoder with Tiling for Compressing Intermediate Feature Space of Deep Neural Networks for Internet of Things

Author:

Park JeongsooORCID,Kim JungraeORCID,Ko Jong Hwan

Abstract

Due to limited resources of the Internet of Things (IoT) edge devices, deep neural network (DNN) inference requires collaboration with cloud server platforms, where DNN inference is partitioned and offloaded to high-performance servers to reduce end-to-end latency. As data-intensive intermediate feature space at the partitioned layer should be transmitted to the servers, efficient compression of the feature space is imperative for high-throughput inference. However, the feature space at deeper layers has different characteristics than natural images, limiting the compression performance by conventional preprocessing and encoding techniques. To tackle this limitation, we introduce a new method for compressing DNN intermediate feature space using a specialized autoencoder, called auto-tiler. The proposed auto-tiler is designed to include the tiling process and provide multiple input/output dimensions to support various partitioned layers and compression ratios. The results show that auto-tiler achieves 18% to 67% higher percent point accuracy compared to the existing methods at the same bitrate while reducing the process latency by 73% to 81%. The dimension variability of an auto-tiler also reduces the storage overhead by 62% with negligible accuracy loss.

Funder

National Research Foundation of Korea

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distance-based feature repack algorithm for video coding for machines;Journal of Visual Communication and Image Representation;2024-06

2. A DNN partitioning framework with controlled lossy mechanisms for edge-cloud collaborative intelligence;Future Generation Computer Systems;2024-05

3. Deep Learning Based Diabetes Mellitus Prediction for Healthcare Monitoring;Journal of Electrical Engineering & Technology;2023-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3