The Compression Optimality of Asymmetric Numeral Systems

Author:

Pieprzyk Josef12ORCID,Duda Jarek3ORCID,Pawłowski Marcin3ORCID,Camtepe Seyit2ORCID,Mahboubi Arash4ORCID,Morawiecki Paweł1ORCID

Affiliation:

1. Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland

2. Data61, CSIRO, Sydney, NSW 2122, Australia

3. Institute of Computer Science and Computer Mathematics, Jagiellonian University, 30-348 Cracow, Poland

4. School of Computing and Mathematics, Charles Sturt University, Port Macquarie, NSW 2444, Australia

Abstract

Source coding has a rich and long history. However, a recent explosion of multimedia Internet applications (such as teleconferencing and video streaming, for instance) renews interest in fast compression that also squeezes out as much redundancy as possible. In 2009 Jarek Duda invented his asymmetric numeral system (ANS). Apart from having a beautiful mathematical structure, it is very efficient and offers compression with a very low coding redundancy. ANS works well for any symbol source statistics, and it has become a preferred compression algorithm in the IT industry. However, designing an ANS instance requires a random selection of its symbol spread function. Consequently, each ANS instance offers compression with a slightly different compression ratio. The paper investigates the compression optimality of ANS. It shows that ANS is optimal for any symbol sources whose probability distribution is described by natural powers of 1/2. We use Markov chains to calculate ANS state probabilities. This allows us to precisely determine the ANS compression rate. We present two algorithms for finding ANS instances with a high compression ratio. The first explores state probability approximations in order to choose ANS instances with better compression ratios. The second algorithm is a probabilistic one. It finds ANS instances whose compression ratios can be made as close to the best ratio as required. This is done at the expense of the number θ of internal random “coin” tosses. The algorithm complexity is O(θL3), where L is the number of ANS states. The complexity can be reduced to O(θLlog2L) if we use a fast matrix inversion. If the algorithm is implemented on a quantum computer, its complexity becomes O(θ(log2L)3).

Funder

Polish National Science Center

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3