Debris Flow Susceptibility Assessment Using the Integrated Random Forest Based Steady-State Infinite Slope Method: A Case Study in Changbai Mountain, China

Author:

Si Alu,Zhang JiquanORCID,Zhang Yichen,Kazuva Emmanuel,Dong Zhenhua,Bao Yongbin,Rong Guangzhi

Abstract

Debris flow events often pose significant damage and are a threat to infrastructure and even livelihoods. Recent studies have mainly focused on determining the susceptibility of debris flow using deterministic or heuristic/probabilistic models. However, each type of model has its own significant advantages with some irreparable disadvantages. The random forest model, which is sensitive to the region where the terrain conditions are suitable for the occurrence of debris flow, was applied along with the steady-state infinite slope method, which is capable of describing the initiation mechanism of debris flow. In this manner, a random-forest-based steady-state infinite slope method was used to conduct susceptibility assessment of debris-flow at Changbai mountain area. Results showed that the assessment accuracy of the proposed random-forest-based steady-state infinite slope method reached 90.88%; however, the accuracy of just the random forest model or steady-state infinite slope method was only 88.48% or 60.45%, respectively. Compared with the single-model assessment results, the assessment accuracy of the proposed method improved by 2.4% and 30.43%, respectively. Meanwhile, the debris-flow-prone area of the proposed method was reduced. The random-forest-based steady-state infinite slope method inherited the excellent diagnostic performance of the random-forest models in the region where the debris flow disaster already occurred; meanwhile, this method further refined the debris-flow-prone area from the suitable terrain area based on physico-mechanical properties; thus, the performance of this method was better than those of the other two models.

Funder

Ministry of Science and Technology of the People's Republic of China

Department of Science and Technology of Jilin Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference67 articles.

1. Volcanic hazard maps;Calder,2015

2. Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management

3. Debris-Flow Hazards and Related Phenomena;Jakob,2005

4. Landslide Hazard Zonation: A Review of Principles and Practice;Varnes,1984

5. A review of assessing landslide frequency for hazard zoning purposes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3