Estimating Brazilian Amazon Canopy Height Using Landsat Reflectance Products in a Random Forest Model with Lidar as Reference Data

Author:

Oliveira Pedro V. C.12ORCID,Zhang Hankui K.2ORCID,Zhang Xiaoyang2ORCID

Affiliation:

1. Imaging Center, Image Processing Laboratory, South Dakota State University, Brookings, SD 57007, USA

2. Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA

Abstract

Landsat data have been used to derive forest canopy structure, height, and volume using machine learning models, i.e., giving computers the ability to learn from data and make decisions and predictions without being explicitly programmed, with training data provided by ground measurement or airborne lidar. This study explored the potential use of Landsat reflectance and airborne lidar data as training data to estimate canopy heights in the Brazilian Amazon forest and examined the impacts of Landsat reflectance products at different process levels and sample spatial autocorrelation on random forest modeling. Specifically, this study assessed the accuracy of canopy height predictions from random forest regression models impacted by three different Landsat 8 reflectance product inputs (i.e., USGS level 1 top of atmosphere reflectance, USGS level 2 surface reflectance, and NASA nadir bidirectional reflectance distribution function (BRDF) adjusted reflectance (NBAR)), sample sizes, training/test split strategies, and geographic coordinates. In the establishment of random forest regression models, the dependent variable (i.e., the response variable) was the dominant canopy heights at a 90 m resolution derived from airborne lidar data, while the independent variables (i.e., the predictor variables) were the temporal metrics extracted from each Landsat reflectance product. The results indicated that the choice of Landsat reflectance products had an impact on model accuracy, with NBAR data yielding more trustful results than the other products despite having higher RMSE values. Training and test split strategy also affected the derived model accuracy metrics, with the random sample split (randomly distributed training and test samples) showing inflated accuracy compared to the spatial split (training and test samples spatially set apart). Such inflation was induced by the spatial autocorrelation that existed between training and test data in the random split. The inclusion of geographic coordinates as independent variables improved model accuracy in the random split strategy but not in the spatial split, where training and test samples had different geographic coordinate ranges. The study highlighted the importance of data processing levels and the training and test split methods in random forest modeling of canopy height.

Funder

U.S. Geological Survey Earth Resources Observation and Science Center

NASA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3