Integrated Use of Synthetic Aperture Radar and Optical Data in Mapping Native Vegetation: A Study in a Transitional Brazilian Cerrado–Atlantic Forest Interface

Author:

Santos Allita R.1ORCID,Barbosa Mariana A. G. A.1,Anjinho Phelipe S.1,Parizotto Denise1,Mauad Frederico F.1ORCID

Affiliation:

1. Center for Water Resources and Environmental Studies (CRHEA), University of São Paulo, São Carlos 13566-590, SP, Brazil

Abstract

This study develops a structure for mapping native vegetation in a transition area between the Brazilian Cerrado and the Atlantic Forest from integrated spatial information of Sentinel-1 and Sentinel-2 satellites. Most studies use integrated data to improve classification accuracy in adverse atmospheric conditions, in which optical data have many errors. However, this method can also improve classifications carried out in landscapes with favorable atmospheric conditions. The use of Sentinel-1 and Sentinel-2 data can increase the accuracy of mapping algorithms and facilitate visual interpretation during sampling by providing more parameters that can be explored to differentiate land use classes with complementary information, such as spectral, backscattering, polarimetry, and interferometry. The study area comprises the Lobo Reservoir Hydrographic Basin, which is part of an environmental conservation unit protected by Brazilian law and with significant human development. LULC were classified using the random forest deep learning algorithm. The classifying attributes were backscatter coefficients, polarimetric decomposition, and interferometric coherence for radar data (Sentinel-1), and optical spectral data, comprising bands in the red edge, near-infrared, and shortwave infrared (Sentinel-2). The attributes were evaluated in three settings: SAR and optical data in separately settings (C1 and C2, respectively) and in an integrated setting (C3). The study found greater accuracy for C3 (96.54%), an improvement of nearly 2% compared to C2 (94.78%) and more than 40% in relation to C1 (55.73%). The classification algorithm encountered significant challenges in identifying wetlands in C1, but performance improved in C3, enhancing differentiation by stratifying a greater number of classes during training and facilitating visual interpretation during sampling. Accordingly, the integrated use of SAR and optical data can improve LULC mapping in tropical regions where occurs biomes interface, as in the transitional Brazilian Cerrado and Atlantic Forest.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3