Exploring 3D Object Detection for Autonomous Factory Driving: Advanced Research on Handling Limited Annotations with Ground Truth Sampling Augmentation
Author:
Reuse Matthias1, Amende Karl1, Simon Martin1, Sick Bernhard2
Affiliation:
1. Valeo Schalter & Sensoren GmbH, Hummendorfer Str. 74, 96317 Kronach, Germany 2. Intelligent Embedded Systems, Universität Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany
Reference57 articles.
1. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Beijbom, O. (2020, January 13–19). nuScenes: A multimodal dataset for autonomous driving. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA. 2. Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey, S., and Ramanan, D. (2019, January 15–20). Argoverse: 3D tracking and forecasting with rich maps. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA. 3. Vision meets robotics: The KITTI dataset;Geiger;Int. J. Robot. Res.,2013 4. Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A.S., Hauswald, L., Pham, V.H., Mühlegg, M., and Dorn, S. (2020). A2d2: Audi autonomous driving dataset. arXiv. 5. Houston, J., Zuidhof, G., Bergamini, L., Ye, Y., Jain, A., Omari, S., Iglovikov, V., and Ondruska, P. (2020, January 16–18). One Thousand and One Hours: Self-driving Motion Prediction Dataset. Proceedings of the Conference on Robot Learning (CoRL), Cambridge, MA, USA.
|
|