Research on Twin Extreme Learning Fault Diagnosis Method Based on Multi-Scale Weighted Permutation Entropy

Author:

Yuan XuyiORCID,Fan Yugang,Zhou ChengjiangORCID,Wang Xiaodong,Zhang Guanghui

Abstract

Due to the complicated engineering operation of the check valve in a high−pressure diaphragm pump, its vibration signal tends to show non−stationary and non−linear characteristics. These leads to difficulty extracting fault features and, hence, a low accuracy for fault diagnosis. It is difficult to extract fault features accurately and reliably using the traditional MPE method, and the ELM model has a low accuracy rate in fault classification. Multi−scale weighted permutation entropy (MWPE) is based on extracting multi−scale fault features and arrangement pattern features, and due to the combination of extracting a sequence of amplitude features, fault features are significantly enhanced, which overcomes the deficiency of the single−scale permutation entropy characterizing the complexity of vibration signals. It establishes the check valve fault diagnosis model from the twin extreme learning machine (TELM). The TELM fault diagnosis model established, based on MWPE, aims to find a pair of non−parallel classification hyperplanes in the equipment state space to improve the model’s applicability. Experiments show that the proposed method effectively extracts the characteristics of the vibration signal, and the fault diagnosis model effectively identifies the fault state of the check valve with an accuracy rate of 97.222%.

Funder

Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3