Cell Plasticity of Marine Mediterranean Diazotrophs to Climate Change Factors and Nutrient Regimes

Author:

Fernández-Juárez Víctor1,Zech Elisa H.2,Pol-Pol Elisabet3,Agawin Nona S. R.3

Affiliation:

1. Department of Biology, Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark

2. Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1030 Wien, Austria

3. Marine Ecology and Systematics (MarES) Department of Biology, University of the Balearic Islands, 07122 Palma, Spain

Abstract

Ocean acidification and warming are current global challenges that marine diazotrophs must cope with. Little is known about the effects of pH and temperature changes at elevated CO2 levels in combination with different nutrient regimes on N2 fixers, especially on heterotrophic bacteria. Here, we selected four culturable diazotrophs, i.e., cyanobacteria and heterotrophic bacteria, found in association with the endemic Mediterranean seagrass Posidonia oceanica. We tested different pH (from pH 4 to 8) and temperature levels (from 12 to 30 °C), under different nutrient concentrations of both phosphorus, P (0.1 µM and 1.5 mM), and iron, Fe (2 nM and 1 µM). We also tested different CO2 concentrations (410 and 1000 particles per million (ppm)) under different P/Fe and temperature values (12, 18, and 24 °C). Heterotrophic bacteria were more sensitive to changes in pH, temperature, and CO2 than the cyanobacterial species. Cyanobacteria were resistant to very low pH levels, while cold temperatures stimulated the growth in heterotrophic bacteria but only under nutrient-limited conditions. High CO2 levels (1000 ppm) reduced heterotrophic growth only when cultures were nutrient-limited, regardless of temperature. In contrast, cyanobacteria were insensitive to elevated CO2 levels, independently of the nutrient and temperature levels. Changes in N2 fixation were mainly controlled by changes in growth. In addition, we suggest that alkaline phosphatase activity (APA) and reactive oxidative species (ROS) can be used as biomarkers to assess the plasticity of these communities to climate change factors. Unlike other studies, the novelty of this work lies in the fact that we compared the responses of cyanobacteria vs. heterotrophic bacteria, studying which changes occur at the cell plasticity level. Our results suggest that the responses of diazotrophs to climate change may depend on their P and Fe status and lifestyle, i.e., cyanobacteria or heterotrophic bacteria.

Funder

Ministerio de Economía, Industria y Competitividad–Agencia Estatal de Investigación and the European Regional Development Funds project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3