Abstract
In this research, we present a novel design for a large scale spectral splitting concentrator photovoltaic system based on double flat waveguides. The sunlight concentrator consists of a Fresnel lens array and double waveguides. Sunlight is firstly concentrated by Fresnel lenses then reaches an upper flat waveguide (UFW). The dichroic mirror-coated prisms are positioned at each focused area to divide the sunlight spectrum into two bands. The mid-energy (mid E) band is reflected at the prism surface and coupled to the UFW. The GaInP/GaAs dual-junction solar cell is attached at the exit port of the UFW to maximize the electrical conversion efficiency of the mid E band. The low-energy (low E) band is transmitted and reaches a bottom flat waveguide (BFW). The mirror coated prisms are utilized to redirect the mid E band sunlight for coupling with the BFW. The GaInAsP/GaInAs dual-junction solar cell is applied to convert the low E band to electricity. The system was modeled using the commercial optic simulation software LightTools™. The results show that the proposed system can achieve optical efficiencies of 84.02% and 80.01% for the mid E band and low E band, respectively, and a 46.1% electrical conversion efficiency for the total system. The simulation of the system performance and comparison with other PV systems prove that our proposed design is a new approach for a highly efficient photovoltaic system.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献