Energy Consumption Analysis for Vehicle Production through a Material Flow Approach

Author:

Sato Fernando Enzo Kenta,Nakata ToshihikoORCID

Abstract

The aim of this study is to comprehensively evaluate the energy consumption in the automotive industry, clarifying the effect of its productive processes. For this propose, the material flow of the vehicles has been elaborated, from mining to vehicle assembly. Initially, processes where each type of material was used, and the relationship between them, were clarified. Subsequently, material flow was elaborated, while considering materials input in each process. Consequently, the consumption of energy resources (i.e., oil, natural gas, coal, and electricity) was calculated. Open data were utilized, and the effects on the Japanese vehicle market were analyzed as a case study. Our results indicate that the energy that is required for vehicle production is 41.8 MJ/kg per vehicle, where mining and material production processes represent 68% of the total consumption. Moreover, 5.23 kg of raw materials and energy resources are required to produce 1 kg of vehicle. Finally, this study proposed values of energy consumption per mass of part produced, which can be used to facilitate future material and energy analysis for the automotive industry. Those values can be adopted and modified as necessary, allowing for possible changes in future premises to be incorporated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. United Nations Framework Convention on Climate Change. Historic Paris Agreement on Climate Change: 195 Nations Set Path to Keep Temperature Rise Well Below 2 Degrees Celsius, Announcement/13 December 2015https://unfccc.int/news/finale-cop21

2. Environmental Improvement of Passenger Cars (IMPRO-Car);Nemry,2008

3. Car Life Cycle Inventory Assessment. SAE Technical Paper 971199;Kobayashi,1997

4. Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3