Dynamic Water Environment Capacity Assessment Based on Control Unit Coupled with SWAT Model and Differential Evolution Algorithm

Author:

Wang Linfang1,Dang Dexuan1,Liu Yue2ORCID,Peng Xinyuan2,Liu Ruimin2ORCID

Affiliation:

1. Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China

2. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

Abstract

Water pollution is a serious problem in China and abroad. Revealing the source types and their spatio-temporal characteristics is the premise of effective watershed management and pollution prevention. Since the national control unit can better match the administrative division, it was useful for the manager to control water pollution. Taking the Fenhe River Basin as the research area, a SWAT model based on the national control unit was established in this study to reveal the current situation of water quantity and quality. Then, in combination with the differential evolution algorithm, the dynamic water environment capacities of each control unit were further discussed. The results showed that the flow upstream was lower, only 7.62–8.40 m3/s, but flow in the midstream and downstream increased to 17.58 m3/s and 18.32 m3/s. Additionally, the flow in tributaries was generally lower than that in the main stream, the flow in unit 6 and unit 11 were only 0.23 m3/s and 0.62 m3/s. The water quality upstream could meet the water quality requirements of drinking water sources, but the pollution in the midstream was the most serious after passing through Taiyuan City, the concentration of NH3-N and TP reached to 6.75 mg/L and 0.41 mg/L. The results of water environmental capacity showed that the residual capacity of ammonia nitrogen (NH3-N) and total phosphorus (TP) in the main stream were positive, indicating that the Fenhe River Basin can accommodate the current pollution load in general, but there was an obvious difference in different months of the year. Especially in the wet season, the non-point source (NPS) pollution problem in the midstream and downstream was more prominent, resulting in a high-capacity consumption rate. It showed that in Taiyuan, Jinzhong, and Linfen Yuncheng in Shanxi Province, should be wary of non-point source pollution. In addition, the water environmental capacity of different units also varied greatly. The capacity consumption of the Taiyuan Section in the midstream was the highest, which mainly occurred in the wet season. The negative values of the residual capacity of NH3-N and TP reached the highest, −131.3 tons/month and −12.1 tons/month. Moreover, the capacity consumption downstream also reached 21–40% of the whole year in the wet season. In addition to the impact of NPS pollution in the wet season, due to the impact of point source pollution, units 8, 9, and 10 downstream had high negative residual capacity in the dry season, especially in January and February. The construction of a SWAT model based on control units and the further analysis of dynamic water environment capacity could provide technical support for Fenhe River Basin management to realize accurate pollution control.

Funder

Scientific Research Projects for Doctoral Researchers in Shanxi Province

Major Decision Consultation Project of Shanxi Provincial Government

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3