Multi-Sensor Platform for Predictive Air Quality Monitoring

Author:

Rescio Gabriele1ORCID,Manni Andrea1ORCID,Caroppo Andrea1ORCID,Carluccio Anna Maria1ORCID,Siciliano Pietro1ORCID,Leone Alessandro1ORCID

Affiliation:

1. National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy

Abstract

Air quality monitoring is a very important aspect of providing safe indoor conditions, and carbon dioxide (CO2) is one of the pollutants that most affects people’s health. An automatic system able to accurately forecast CO2 concentration can prevent a sudden rise in CO2 levels through appropriate control of heating, ventilation and air-conditioning (HVAC) systems, avoiding energy waste and ensuring people’s comfort. There are several works in the literature dedicated to air quality assessment and control of HVAC systems; the performance maximisation of such systems is typically achieved using a significant amount of data collected over a long period of time (even months) to train the algorithm. This can be costly and may not respond to a real scenario where the habits of the house occupants or the environment conditions may change over time. To address this problem, an adaptive hardware–software platform was developed, following the IoT paradigm, with a high level of accuracy in forecasting CO2 trends by analysing only a limited window of recent data. The system was tested considering a real case study in a residential room used for smart working and physical exercise; the parameters analysed were the occupants’ physical activity, temperature, humidity and CO2 in the room. Three deep-learning algorithms were evaluated, and the best result was obtained with the Long Short-Term Memory network, which features a Root Mean Square Error of about 10 ppm with a training period of 10 days.

Funder

MISE-Italian Ministry for Economic Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3