Effects of Decomposition of Submerged Aquatic Plants on CO2 and CH4 Release in River Sediment–Water Environment

Author:

Xie Jizheng1,Gao Yuexiang2,Xu Xueting2,Chen Ting2,Tian Lingyun3,Zhang Chenxi3,Chao Jianying2,Han Tianlun2

Affiliation:

1. Jiangsu Ecological Environmental Monitoring Co., Ltd., Nanjing 210036, China

2. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China

3. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Organic matter was increased due to the input of plant litter, resulting in changes in the physicochemical properties and enhancement of greenhouse gas (GHG) emissions in water bodies. There are few reports on effects of decomposition of aquatic plants on GHGs emissions. This study investigated the effects of the degradation of two aquatic plants, Potamogeton crispus and Typha orientalis Presl, upon release of CO2 and CH4 at the sediment–water interface. During early decomposition, the release of CO2 and CH4 at the sediment–water interface was increased by the degradation of the two aquatic plants, and release flux of CO2 and CH4 were increased rapidly at first and then decreased. Due to the differences in properties of C, lignin, cellulose and other components of the plants, the Potamogeton crispus group obtained higher abundance of genes relevant to CO2 and CH4 metabolism, which leads to the increase of CO2 and CH4 emissions compared with that of the Typha orientalis Presl. In addition, dissolved oxygen and pH were decreased due to the decomposition of organic matter in the plant residues at the sediment–water interface, resulting in growth of anaerobic microorganisms. The increase of the relative abundance of anaerobic microorganisms promoted the decomposition of organic matter in the sediment and the enhancement of cell respiration, promoting the release of CH4 and CO2 during the decomposition of aquatic plants.

Funder

Natural Science Foundation of Jiangsu Province

Key University Science Research Project of Jiangsu Province

Special Fund of Chinese Central Government for Basic Scientific Research Operations in commonweal Research Institute

Xinjiang Science and Technology Support Project Plan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3