Regulation of Hypoxic–Adenosinergic Signaling by Estrogen: Implications for Microvascular Injury

Author:

Cassavaugh Jessica1,Qureshi Nada1,Csizmadia Eva1,Longhi Maria Serena1ORCID,Matyal Robina1,Robson Simon C.1ORCID

Affiliation:

1. Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA

Abstract

Loss of estrogen, as occurs with normal aging, leads to increased inflammation, pathologic angiogenesis, impaired mitochondrial function, and microvascular disease. While the influence of estrogens on purinergic pathways is largely unknown, extracellular adenosine, generated at high levels by CD39 and CD73, is known to be anti-inflammatory in the vasculature. To further define the cellular mechanisms necessary for vascular protection, we investigated how estrogen modulates hypoxic–adenosinergic vascular signaling responses and angiogenesis. Expression of estrogen receptors, purinergic mediators inclusive of adenosine, adenosine deaminase (ADA), and ATP were measured in human endothelial cells. Standard tube formation and wound healing assays were performed to assess angiogenesis in vitro. The impacts on purinergic responses in vivo were modeled using cardiac tissue from ovariectomized mice. CD39 and estrogen receptor alpha (ERα) levels were markedly increased in presence of estradiol (E2). Suppression of ERα resulted in decreased CD39 expression. Expression of ENT1 was decreased in an ER-dependent manner. Extracellular ATP and ADA activity levels decreased following E2 exposure while levels of adenosine increased. Phosphorylation of ERK1/2 increased following E2 treatment and was attenuated by blocking adenosine receptor (AR) and ER activity. Estradiol boosted angiogenesis, while inhibition of estrogen decreased tube formation in vitro. Expression of CD39 and phospho-ERK1/2 decreased in cardiac tissues from ovariectomized mice, whereas ENT1 expression increased with expected decreases in blood adenosine levels. Estradiol-induced upregulation of CD39 substantially increases adenosine availability, while augmenting vascular protective signaling responses. Control of CD39 by ERα follows on transcriptional regulation. These data suggest novel therapeutic avenues to explore in the amelioration of post-menopausal cardiovascular disease, by modulation of adenosinergic mechanisms.

Funder

National Institutes of Health

MSL funding

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3