Histone Deacetylase 6 Inhibitor CKD-WID Suppressed Monosodium Urate-Induced Osteoclast Formation by Blocking Calcineurin-NFAT Pathway in RAW 264.7 Cells

Author:

Kim Seong-Kyu12ORCID,Choe Jung-Yoon12ORCID,Kim Ji-Won12ORCID,Park Ki-Yeun2

Affiliation:

1. Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea

2. Arthritis and Autoimmunity Research Center, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea

Abstract

Histone deacetylase (HDAC) has been found to play a crucial role in the regulation of osteoclast differentiation and formation. This study was designed to identify the effect of the HDAC6 inhibitor CKD-WID on the receptor for the activation of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation in the presence of monosodium urate (MSU) in RAW 264.7 murine macrophage cells. The expression of osteoclast-specific target genes, calcineurin, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) was evaluated in RAW 264.7 murine macrophages treated with MSU, RANKL, or CKD-WID by real-time quantitative polymerase chain reaction and Western blot assay. The effect of CKD-WID on osteoclast formation was measured by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation staining, and assays for bone resorption activity. RANKL in the presence of MSU significantly induced HDAC6 gene and protein expression in RAW 264.7 cells. CKD-WID markedly suppressed the expression of osteoclast-related markers such as c-Fos, TRAP, cathepsin K, and carbonic anhydrase II induced by co-stimulation with RANKL and MSU in RAW 264.7 cells. Transcription factor NFATc1 mRNA expression and nuclear NFATc1 protein expression induced by co-stimulation with RANKL and MSU were significantly inhibited by CKD-WID treatment. CKD-WID also decreased the number of TRAP-positive multinuclear cells and F-actin ring-positive cells and attenuated bone resorption activity. Co-stimulation with RANKL and MSU increased calcineurin gene and protein expression, which was significantly blocked by CKD-WID treatment. The HDAC6 inhibitor CKD-WID suppressed MSU-induced osteoclast formation through blocking the calcineurin-NFAT pathway in RAW 264.7 cells. This suggests that HDAC6 is considered a therapeutic target in uric acid-mediated osteoclastogenesis.

Funder

Chong Kun Dang Pharmaceutical Corp., Republic of Korea

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3