Modified Zeolite Catalyst for a NOx Selective Catalytic Reduction Process in Nitric Acid Plants

Author:

Saramok MagdalenaORCID,Szymaszek AgnieszkaORCID,Inger Marek,Antoniak-Jurak KatarzynaORCID,Samojeden BogdanORCID,Motak MonikaORCID

Abstract

Natural zeolite of the heulandite-type framework was modified with iron and tested as a catalyst for the selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) in the temperature range of 150–450 °C. The catalyst was prepared at a laboratory scale in a powder form and then the series of experiments of its shaping into tablets was conducted. Physicochemical studies of the catalyst (N2 sorption at −196 °C, FT-IR, XRD, UV-vis) were performed to determine the textural and structural properties and identify the surface functional groups, the crystalline structure of the catalysts and the form and aggregation of the active phase. The activity tests over the shaped catalyst were performed industry-reflecting conditions, using tail gases from the pilot nitric acid plant. The influence of a temperature, catalyst load, and the amount of reducing agent (ammonia) on the NOx reduction process were investigated. The results of catalytic tests that were performed on model gas mixture showed that non-modified clinoptilolite exhibited around 58% conversion of NO at 450 °C. The temperature window of the shaped catalyst shifted to a higher temperature range in comparison to the powder sample. The catalytic performance of the shaped Fe-clinoptilolite in the industry-reflecting conditions was satisfactory, especially at 450 °C. Additionally, it was observed that the ratio of N2O concentration downstream and upstream of the catalytic bed was below 1, which indicated that the catalyst exhibited activity in both DeNOx and DeN2O process.

Funder

Akademia Górniczo-Hutnicza im. Stanislawa Staszica

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference68 articles.

1. Council Decision (EU) 2017/1757 of 17 July 2017 on the Acceptance on behalf of the European Union of an Amendment to the 1999 Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution to Abate Acidification, Eutrophication and Ground-Level;OJL,2017

2. The Role of Fe2O3 Species in Depressing the Formation of N2O in the Selective Reduction of NO by NH3 over V2O5/TiO2-Based Catalysts;Kim;Catalysts,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3