Author:
Hou Xueli,Li Zhen,Zhang Zhijun
Abstract
Boric acid is recently proved to be a good substitute for conventional acidic catalytic materials. However, few studies used boric acid as a catalyst in biomass pyrolysis. This study focused on the catalytic effects of boric acid (BA) on pyrolysis behaviors of woody biomass. The birch wood flour (WF) was used as feedstock and treated by impregnation of boric acid solution. Both untreated and boric acid-treated samples (BW) were characterized by FTIR and SEM. Thermogravimetry (TG) and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS) techniques were used for studying mass loss, composition, and distribution of evolved volatiles formed from pyrolysis process. Additionally, a small fixed-bed pyrolyzer with an amplificated loading amount was used to prepare liquid products, and further, GC/MS were used to analyze the composition of these liquid products. Different pyrolysis temperatures and boric acid/wood flour mass ratios were also studied. The main results are as follows. Boric acid infiltrated into both cell cavity and cell wall through impregnation treatment. FTIR analysis showed that boric acid reacted with wood flour to form B-O-C bond during the treatment. After the treatment of boric acid, the initial degradation temperatures and residual carbon contents were increased, while the maximum weight loss rates were decreased. Boric acid significantly altered the composition and distribution of volatile pyrolysis products of wood flour. It significantly increased the contents of small molecule compounds such as acetic acid and furfural but, decreased the contents of phenol derivatives with high molecular weights. And these changes became more pronounced as the temperature increased. When mass ratio of boric acid (BA) to wood flour (WF) was 2, the acetic acid accounted for 91.28% of the total product in the pyrolysis liquid, which was 14 times higher than that of untreated wood flour. Boric acid effectively catalyzed fast pyrolysis of woody biomass to selectively produce acetic acid
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献