A Study on the Effect of Different Ball Milling Methods on the NH3-SCR Activity of Aluminum-Laden Bayan Obo Tailings

Author:

Bai Xinrui,Lin Jiawei,Chen Zedong,Hou Limin,Wu WenfeiORCID

Abstract

Rich in Fe, Ce, Mn, Si and other elements which have good catalytic activity, Bayan Obo rare-earth tailings are naturally advantaged as the carrier of denitrification catalysts. In this paper, pseudo boehmite (γ-Al2O3) was mixed with Bayan Obo tailings using different ball milling methods for modification to prepare NH3-SCR catalysts. The effect of different mixing methods on the SCR denitrification activity at a low temperature was investigated and the prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), temperature programed desorption (NH3-TPD), temperature programed reduction (H2-TPR) and other means. The conversion rate of NOx at 250–350 °C was above 80% and the highest conversion rate of NOx of 90% was achieved at 300 °C. SEM and XRD revealed that the tailings modified by pseudo boehmite (γ-Al2O3) using the ordinary ball milling method have loose structure and good dispersion of active substances, and specific surface area (BET) analysis shows that the tailings have the maximum specific surface area and pore volume. However, over grinding and secondary spheronization were observed in the tailings modified by pseudo boehmite (γ-Al2O3) using high energy ball milling method, leading to the decrease of specific surface area and pore volume, poor dispersion of active substances, and ultimately low denitrification rate.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3