Net-Patterned Fluorine-Doped Tin Oxide to Accelerate the Electrochromic and Photocatalytic Interface Reactions

Author:

Jeong Seock-Joon,Kim Kue-Ho,Ahn Hyo-Jin

Abstract

In this study, the surface morphology of net-patterned fluorine-doped tin oxide (FTO) films was optimized with mesh sizes (60 mesh, 40 mesh, and 24 mesh) using the one-pot horizontal ultrasonic spray pyrolysis deposition (HUSPD) process. The 40M-FTO sample exhibited optimized electrical and optical properties due to the improved crystallinity and net-patterned surface morphology of FTO. The electrochromic (EC) electrodes fabricated with 40M-FTO showed superior EC performance, including transmittance modulation (ΔT, 58.7%), switching speeds (4.1 s for coloration and 5.9 s for bleaching), and coloration efficiency (CE, 52.4 cm2/C). These optimum values were attributed to the combined effect of the enhanced electrical properties from the improved crystallinity of the SnO2 and the high transmittance with a large surface area stemming from the optimization of the net-patterned FTO surface morphology. Moreover, the improved reaction sites with large surface area and enhanced electrical conductivity can facilitate the photocatalytic reaction. Accordingly, we suggest our novel strategy for use in creating promising transparent conducting electrodes that can be fabricated with net-patterned FTO to realize enhanced electrochromic and photocatalytic interface reactions.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3