Abstract
In this paper, titanium–dioxide (TiO2) nanotubes (TNTs) are formed by anodic oxidation with a fluorinated glycerol–water (85% and 15%, respectively) electrolyte to examine the effect of fluoride ion concentration, time, and applied voltage on TNT morphologies and dimensions. For fluoride ion concentration, the surface etching increases when the amount of ammonium fluoride added to the electrolyte solution increases, forming nanotube arrays with a clear pore structure. At a constant voltage of 20 V, TNTs with an average length of ~2 µm are obtained after anodization for 180 min. A prolonged anodization time only results in a marginal length increment. The TNT diameter is voltage dependent and increases from approximately 30 nm at 10 V to 310 nm at 60 V. At 80 V, the structure is destroyed. TNTs formed at 20 V for 180 min are annealed to induce the TiO2 anatase phase in either air or nitrogen. When ethylenediaminetetraacetic acid is added as a hole scavenger, 100% hexavalent chromium removal is obtained after 120 min of sunlight exposure for nitrogen-annealed TNTs.
Funder
Japan Society for the Promotion of Science
Ministry of Higher Education, Malaysia
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献