Catalytic Depolymerization of Date Palm Waste to Valuable C5–C12 Compounds

Author:

Galiwango EmmanuelORCID,Al-Marzuoqi Ali H.,Khaleel Abbas A.,Abu-Omar Mahdi M.

Abstract

Lignin depolymerization often requires multiple isolation steps to convert a lignocellulose matrix into high-value chemicals. In addition, lignin structural modification, low yields, and poor product characteristics remain challenges. Direct catalytic depolymerization of lignocellulose from date palm biomass was investigated. Production of high value chemicals heavily depends on optimization of different parameters and method of conversion. The goal of the study was to elucidate the role of different parameters on direct conversion of date palm waste in a bench reactor, targeting valuable C5–C12 compounds. The catalytic performance results demonstrated better liquid yields using a commercial alloy catalyst than with laboratory-prepared transition metal phosphide catalysts made using nickel, cobalt, and iron. According to the gas chromatography-mass spectrometry results, C7–C8 compounds were the largest product fraction. The yield improved from 3.6% without a catalyst to 68.0% with a catalyst. The total lignin product yield was lower without a catalyst (16.0%) than with a catalyst (76.0%). There were substantial differences between the carbon distributions from the commercial alloy catalyst, supported transition metal phosphide catalyst, and catalyst-free processes. This may be due to differences between reaction pathways. Lab-made catalysts cracked the biomass to produce more gases than the alloy catalyst. The final pressure rose from 2 bar at the start of the experiment to 146.15 bar and 46.50 bar after the respective reactions. The particle size, solvent type, time, temperature, gas, and catalytic loading conditions were 180 µm, methanol, 6 h, 300 °C, nitrogen, and 5 wt %, respectively. The results from this study provide a deep understanding of the role of different process parameters, the positive attributes of the direct conversion method, and viability of date palm waste as a potential lignocellulose for production of high-value chemicals.

Funder

Emirates Center for Energy and Environment

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3