The Impact of Amount of Cu on CO2 Reduction Performance of Cu/TiO2 with NH3 and H2O

Author:

Nishimura AkiraORCID,Sakakibara Yoshito,Koshio Akira,Hu Eric

Abstract

This study has investigated the impact of molar ratio of CO2 to reductants NH3 and H2O as well as that of Cu loading on CO2 reduction characteristics over Cu/TiO2. No study to optimize the reductants’ combination and Cu loading weight in order to enhance CO2 reduction performance of TiO2 has been investigated yet. This study prepared Cu/TiO2 film by loading Cu particles during the pulse arc plasma gun process after coating TiO2 film by the sol-gel and dip-coating process. As to loading weight of Cu, it was regulated by change in the pulse number. This study characterized the prepared Cu/TiO2 film by SEM and EPMA. Additionally, the performance of CO2 reduction has been investigated under the illumination condition of Xe lamp with or without ultraviolet (UV) light. It is revealed that the molar ratio of CO2/NH3/H2O is optimized according to the pulse number. Since the amount of H+ which is the same as that of electron is needed to produce CO decided following the theoretical CO2 reduction reacting with H2O or NH3, larger H+ is needed with the increase in the pulse number. It is revealed that Cu of 4.57 wt% for the pulse number of 200 is the optimum condition, whereas the molar quantity of CO per unit weight of Cu/TiO2 with and without UV light illumination is 34.1 mol/g and 12.0 mol/g, respectively.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference40 articles.

1. On Engineering Strategies for Photoselective CO2 Reduction—A through Review;Matavos-Aramyan;Appl. Mater. Today,2020

2. Photoassisted CO2 Conversion to Fuels;Remiro-Buenamanana;Chem. Cat Chem. Minirev.,2019

3. Modified TiO 2 photocatalyst for CO 2 photocatalytic reduction: An overview

4. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3