Quarry Residue: Treatment of Industrial Effluent Containing Dye

Author:

Almeida Lariana Negrão Beraldo de,Josué Tatiana Gulminie,Nogueira Othavio Henrique Lupepsa,Dias Daniele TonioloORCID,Tusset Angelo Marcelo,Santos Onélia Aparecida Andreo dos,Lenzi Giane Gonçalves

Abstract

This work is devoted to the investigation of the discoloration of the synthetic and industrial effluent, using a quarry residue (MbP), which is a material naturally composed of mixed oxides, compared to zinc oxide (ZnO), acting as photocatalysts and adsorbents. The optimization of the pH and catalyst concentration parameters was carried out, and the industrial effluent was then treated by photocatalytic reactions, adsorption, and photolysis. Industrial effluent was supplied by a packaging company and was collected for a period of seven consecutive days, showing the oscillation of the parameters in the process. The material characterizations were obtained by scanning electron microscopy (SEM-EDS), X-Ray diffraction (XRD), and photoacoustic spectroscopy (PAS). The results indicated that the composition of the quarry waste is mainly silica and has Egap 2.16 eV. The quarry residue as photocatalyst was active for the artificial effluent (synthetic dye solution), with a maximum of 98% discoloration, and as an adsorbent for industrial effluent, with a maximum of 57% of discoloration. Although the quarry residue has shown results lower than ZnO, it is considered a promising material in adsorption processes and photocatalytic reactions for discoloration of aqueous solutions.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3