Abstract
The development of selective and robust heterogeneous oxidation catalysts is an enabling technology for conversion of biomass-derived platform chemicals. Vanadium active sites were incorporated into the structure of mesoporous silica via an ultra-fast, one-pot synthesis method based on microwave-assisted heating. In addition, Al/Ti/Zr/Ce anchoring ions were introduced in order to minimize vanadium leaching and better control its dispersion. The supported V-(Al/Ti/Zr/Ce)-MCM-41 composite materials were assessed as catalysts for aerobic C–C bond cleavage of simple models for lignin (1,2-diphenyl-2-methoxyethanol) and sugar-derived polyalcohols (meso-hydrobenzoin). The TiIV ions proved to be the best anchors to prevent V leaching, while AlIII and ZrIV ions were the best to improve selective conversion of the substrates. The active sites in these catalysts are shown to be 2D VOx layers stabilized on the anchors. In a screen of twelve solvents, weakly polar solvents like toluene were found to be most suitable for this reaction, as was environmentally friendly ethyl acetate. The above properties, together with the high selectivity for C–C bond cleavage, advocate for a heterogeneous catalytic pathway, intrinsically different from that reported previously for molecular oxovanadium (V) catalysts.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献