Efficient Advanced Oxidation Process (AOP) for Photocatalytic Contaminant Degradation Using Exfoliated Metal-Free Graphitic Carbon Nitride and Visible Light-Emitting Diodes

Author:

Rana Adeem GhaffarORCID,Tasbihi MinooORCID,Schwarze Michael,Minceva MirjanaORCID

Abstract

The photocatalytic performance of metal-free graphitic carbon nitride (g-C3N4) was examined using visible light-emitting diodes (LEDs). A comparative and parametric study was conducted using the photocatalytic degradation of phenol as a model reaction. The g-C3N4 photocatalyst was synthesized from melamine using thermal condensation, followed by a thermal exfoliation that increases the catalyst surface area from 11 to 170 m2/g. Different characterization techniques, namely X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption using the Brunauer–Emmett–Teller method, ultraviolet-visible (UV–vis) spectroscopy, transmission electron microscopy, photoluminescence spectroscopy (PL), and zeta potential analysis, were used to characterize the photocatalyst. A comparison of the photodegradation experiments conducted with a full-spectrum xenon lamp and a custom-made single-wavelength LED immersion lamp showed that the photocatalyst performance was better with the LED immersion lamp. Furthermore, a comparison of the performance of exfoliated and bulk g-C3N4 revealed that exfoliated g-C3N4 completely degraded the pollutant in 90 min, whereas only 25% was degraded with bulk g-C3N4 in 180 min because the exfoliated g-C3N4 enhances the availability of active sites, which promotes the degradation of phenol. Experiments conducted at different pH have shown that acidic pH favors the degradation process. The exfoliated g-C3N4 has shown high photocatalytic performance in the photodegradation of other phenolic compounds, such as catechol, m-cresol, and xylenol, as well.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3