Energy Transport of Photocatalytic Carbon Dioxide Reduction in Optical Fiber Honeycomb Reactor Coupled with Trough Concentrated Solar Power

Author:

Tong Kai,Chen LeiORCID,Yang Lijun,Du Xiaoze,Yang Yongping

Abstract

Thanks to the high photon efficiency and reaction density, the optical fiber monolith reactor (OFMR) for InTaO4-based CO2 photoreduction is regarded as a promising photoreactor. In this work, the OFMR coupling with parabolic trough concentrator (PTC) is proposed to enlarge the daylighting area by several times without increasing the cost of photocatalysts. Based on the Monte Carlo ray-tracing (MCRT) approach and the finite volume method (FVM), a computational model of the reaction module considering the light, heat, and mass transfer is developed to optimize the fiber honeycomb reactor coupled with the PTC. As a result, the volume-averaged concentration of production reaches 1.85 × 10−4 mol·m−3, which is much higher than the traditional OFMR with the production concentration of 9.61 × 10−6 mol·m−3 under the same condition. The optimized structure of the monolith for better photocatalytic performance is obtained. It shows that the diameters of gas channels ranging from 1.5 to 2 mm are beneficial to the reaction efficiency. Finally, the results suggested that the even number of the gas channel should be avoided due to the pseudo-steady zone in the middle of the monolith. The reaction element with the high serial number along the flow direction has the reduced reaction density and endangers the organic optical fibers especially when the serial number exceeds 5.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3