Abstract
Thanks to the high photon efficiency and reaction density, the optical fiber monolith reactor (OFMR) for InTaO4-based CO2 photoreduction is regarded as a promising photoreactor. In this work, the OFMR coupling with parabolic trough concentrator (PTC) is proposed to enlarge the daylighting area by several times without increasing the cost of photocatalysts. Based on the Monte Carlo ray-tracing (MCRT) approach and the finite volume method (FVM), a computational model of the reaction module considering the light, heat, and mass transfer is developed to optimize the fiber honeycomb reactor coupled with the PTC. As a result, the volume-averaged concentration of production reaches 1.85 × 10−4 mol·m−3, which is much higher than the traditional OFMR with the production concentration of 9.61 × 10−6 mol·m−3 under the same condition. The optimized structure of the monolith for better photocatalytic performance is obtained. It shows that the diameters of gas channels ranging from 1.5 to 2 mm are beneficial to the reaction efficiency. Finally, the results suggested that the even number of the gas channel should be avoided due to the pseudo-steady zone in the middle of the monolith. The reaction element with the high serial number along the flow direction has the reduced reaction density and endangers the organic optical fibers especially when the serial number exceeds 5.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献