Abstract
Removal of persistent pollutants from water by photoelectrocatalysis has emerged as a promising powerful process. Applied potential plays a key role in the photocatalytic activity of the semi-conductor as well as the possible presence of chloride ions in the solution. This work aims to investigate these effects on the photoelectrocatalytic oxidation of diethyl phthalate (DEP) by using TiO2 nanotubular anodes under solar light irradiation. PEC tests were performed at constant potentials under different concentration of NaCl. The process is able to remove DEP following a pseudo-first order kinetics: values of kapp of 1.25 × 10−3 min−1 and 1.56 × 10−4 min−1 have been obtained at applied potentials of 1.8 and 0.2 V, respectively. Results showed that, depending on the applied potential, the presence of chloride ions in the solution affects the degradation rate resulting in a negative effect: the presence of 500 mM of Cl− reduces the value of kapp by 50 and 80% at 0.2 and 1.8 V respectively.
Funder
Regione Autonoma della Sardegna
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献