Abstract
The potential of using thermally prepared Ni0.6Co0.4-oxide for the electrochemical degradation of organic contaminants was investigated using methylene blue (MB) in an aqueous solution, as a model pollutant. The results of UV spectroscopy obtained during galvanostatic electrolyses at the anode indicated the complete removal of the methylene blue dye. The high removal of chemical oxygen demand (COD) and total organic carbon (TOC) suggested a high level of mineralization of its intermediates. It was found that the electrocatalytic performance of the electrode in the anodic degradation of the organic pollutant was significantly enhanced by the presence of chloride ions in the solution. The improvement in the degradation rate of MB was attributed to the in situ electrogeneration of chlorine active species. The results show that Ni0.6Co0.4-oxide anode can be employed as a stable energy-efficient electrocatalyst in the electrochemical purification of wastewater.
Funder
Petroleum Technology Development Fund
Natural Sciences and Engineering Research Council of Canada
Faculty of Engineering, McGill University
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献