Evaluation of Efficient and Noble-Metal-Free NiTiO3 Nanofibers Sensitized with Porous gC3N4 Sheets for Photocatalytic Applications

Author:

Khan Haritham,Kang Suhee,Lee Caroline Sunyong

Abstract

One-dimensional nickel titanate nanofibers (NiTiO3 NFs) were synthesized and loaded with acetic acid-treated exfoliated and sintered sheets of graphitic carbon nitride (AAs-gC3N4) to fabricate a unique heterogeneous structure. This novel fabrication method for porous AAs-gC3N4 sheets using acetic acid-treated exfoliation followed by sintering provided gC3N4 with a surface area manifold larger than that of bulk gC3N4, with an abundance of catalytically active sites. Hybrid photocatalysts were synthesized through a two-step process. Firstly, NiTiO3 NFs (360 nm in diameter) were made by electrospinning, and these NiTiO3 NFs were sensitized with exfoliated gC3N4 sheets via a sonication process. Varying the weight ratio of NiTiO3 fibers to porous AAs-gC3N4 established that NiTiO3 NFs containing 40 wt% of porous AAs-gC3N4 exhibited optimal activity, i.e., removal of methylene blue and H2 evolution. After 60 min exposure to visible light irradiation, 97% of the methylene blue molecules were removed by the hybrid photocatalyst, compared with 82%, 72%, and 76% by pristine AAs-gC3N4, NiTiO3 NFs, and bulk gC3N4, respectively. The optimal structure also displayed excellent H2 evolution performance. The H2 evolution rate in the optimal sample (152 μmol g−1) was 2.2, 3.2 and 3-fold higher than that in pure AAs-gC3N4 (69 μmol g−1), NiTiO3 NFs (47 μmol g−1) and bulk gC3N4 (50 μmol g−1), respectively. This clearly shows that the holey AAs-gC3N4 nanosheets interacted synergistically with the NiTiO3 NFs. This extended the lifetime of photogenerated charge carriers and resulted in superior photocatalytic activity compared with pristine NiTiO3 NFs and bulk gC3N4. The higher Brunauer-Emmett-Teller surface area and the presence of many catalytically active sites also enhanced the photocatalytic performance of the hybrid sample. Moreover, through photoluminescence and photocurrent response analysis, a significant decrease in the recombination losses of the hybrid photocatalysts was also confirmed. Thus, this is a novel strategy to fabricate highly efficient photocatalysts with precisely tunable operating windows and enhanced charge separation.

Funder

National Research Foundation of Korea

Industrial Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3