Pore Blocking by Phenolates as Deactivation Path during the Cracking of 4-Propylphenol over ZSM-5

Author:

Stellato Michael J.,Innocenti Giada,Bommarius Andreas S.ORCID,Sievers CarstenORCID

Abstract

Cracking of propyl side chains from 4-propylphenol, a model compound for lignin monomers, is studied for a commercial ZSM-5 zeolite catalyst. The decline of 4-propylphenol conversion with time on stream can be delayed by co-feeding water. FTIR spectroscopy shows the formation of chemisorbed phenolates during reactions and significant amounts of phenolics are detected by GC-MS of the extract from the spent catalysts. Thus, chemisorbed phenolates are identified as the main reason for deactivation in the absence of water. Regardless of the amount of co-fed water, substituted monoaromatics and polyaromatic species are formed. Comprehensive characterization of the spent catalysts including Raman and solid-state 27Al NMR spectroscopy, and thermogravimetric analysis points to a combination of deactivation processes. First, phenolates bind to Lewis acid sites within the zeolite framework and hinder diffusion unless they are hydrolyzed by water. In addition, light olefins created during the cracking process react to form a polyaromatic coke that deactivates the catalyst more permanently.

Funder

Georgia Institute of Technology

National Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3