Spectroscopic Analyses of Changes in Photocatalytic and Catalytic Activities of Mn- and Ni-Ion Doped and Base-Treated Reduced Graphene Oxide

Author:

Lee Hangil,Kim Hyun Sung

Abstract

While reduced graphene oxide (rGO) is used widely as a catalyst, its catalytic activity can be improved significantly by modifying it with a metal. In this study, we compared the photocatalytic and catalytic properties of base-treated rGO particles and transition-metal-ion-doped rGO based on the oxidation reaction of thiophenol and the photocatalytic degradation of 4-chlorophenol. Since the two catalytic activities are related to the changes in the electronic structure of rGO, X-ray photoemission spectroscopy, X-ray absorption spectroscopy, and Raman spectroscopy were performed. When rGO was doped with Mn2+ ions, its catalytic properties improved with respect to both reactions. The changes in the electronic structure of rGO are attributed to the formation of defect structures on the rGO surface via a reaction between the doped Mn2+ ions and oxygen of the rGO surface. Thus, the results show that the doping of rGO with Mn ions in the +2-charge state (stable oxide form: MnO) enhances its catalytic and photocatalytic activities. Hence, this study provides new insights into the use of defect-controlled rGO as a novel catalyst.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3