Abstract
Volatile organic compounds (VOCs) have a negative effect on both humans and the environment; therefore, it is crucial to minimize their emission. The conventional solution is the catalytic oxidation of VOCs by air; however, in some cases this method requires relatively high temperatures. Thus, the oxidation of short-chain alkanes, which demonstrate the lowest reactivity among VOCs, starts at 250–350 °C. This research deals with the ozone catalytic oxidation (OZCO) of alkanes at temperatures as low as 25–200 °C using an alumina-supported manganese oxide catalyst. Our data demonstrate that oxidation can be significantly accelerated in the presence of a small amount of O3. In particular, it was found that n-C4H10 can be readily oxidized by an air/O3 mixture over the Mn/Al2O3 catalyst at temperatures as low as 25 °C. According to the characterization data (SEM-EDX, XRD, H2-TPR, and XPS) the superior catalytic performance of the Mn/Al2O3 catalyst in OZCO stems from a high concentration of Mn2O3 species and oxygen vacancies.
Funder
Scientific Schools Development Program of N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献