Self-Assembled Hybrid ZnO Nanostructures as Supports for Copper-Based Catalysts in the Hydrogenolysis of Glycerol

Author:

Omar Lama,Perret Noémie,Daniele StephaneORCID

Abstract

This study describes the use of new ZnO/PAAH hybrid nanomaterials (PAAH = polyacrylic acid) as copper catalyst supports for the hydrogenolysis of glycerol. A study of the synthesis parameters (washing process, temperatures of synthesis and calcination) of these hybrid supports has allowed us to vary their morphology and specific surface area and ultimately the sizes and dispersion of the copper nanoparticles, and to perform a general analysis of their effects on the catalytic performance of the materials. All catalysts were synthesized by the urea deposition-precipitation method (DPU) and were fully characterized to establish a structure–activity relationship. Optimization of the synthesis and catalytic conditions allowed remarkable yields/conversions of the order of 70% for selectivities in 1,2 propanediol of 90%.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference30 articles.

1. Glycerol from biodiesel production: Technological paths for sustainability

2. Glycerol, A Versatile Renewable Feedstock for the Chemical Industry;Mota,2017

3. From Glycerol to Value-Added Products

4. Glycerol transformation to value-added 1,3-propanediol production: A paradigm for a sustainable biorefinery process;Samudrala,2019

5. Panel on Food Additives and Nutrient Sources added to Food (ANS);EFSA J.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3