Alkoxy-Functionalized Schiff-Base Ligation at Aluminum and Zinc: Synthesis, Structures and ROP Capability

Author:

Zhang Xin,Chen Kai,Chicoma Melissa,Goins Kimberly,Prior TimothyORCID,Nile Terence,Redshaw CarlORCID

Abstract

The Schiff-base compounds 2,4-di-tert-butyl-6-(((3,4,5-trimethoxyphenyl)imino)methyl)phenol (L1H), 2,4-di-tert-butyl-6-(((2,4,6-trimethoxyphenyl)imino)methyl)phenol (L2H), 2,4-di-tert-butyl-6-(((2,4-trimethoxyphenyl)imino)methyl)phenol) (L3H) derived from anilines bearing methoxy substituents have been employed in the preparation of alkylaluminum and zinc complexes. Molecular structure determinations reveal mono-chelate aluminum complexes of the type [Al(Ln)(Me)2] (L1, 1; L2, 2; L3, 3), and bis(chelate) complexes for zinc, namely [Zn(Ln)2] (L1, 5; L2, 6; L3, 7). All complexes have significant activity at 50 °C and higher activity at 100 °C for the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) with good control over the molar mass distribution (Mw/Mn < 2) and molecular weight. Complex 1 was found to be the most active catalyst, achieving 99% conversion within 18 h at 50 °C and giving polycaprolactone with high molecular weight; results are compared against aniline-derived (i.e., non-methoxy containing) complexes (4 and 8). Aluminum or zinc complexes derived from L1 exhibit higher activity as compared with complexes derived from L2 and L3. Complex 1 was also tested as an initiator for the copolymerization of ε-CL and glycolide (GL). The CL-GL copolymers have various microstructures depending on the feed ratio. The crosslinker 4,4′-bioxepane-7,7′-dione was used in the polymerization with ε-CL using 1, and well-defined cross-linked PCL was afforded of high molecular weight.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3