Catalyst and Elemental Analysis Involving Biodiesel from Various Feedstocks

Author:

Simbi Ines,Aigbe Uyiosa Osagie,Oyekola OluwaseunORCID,Osibote Otolorin AdelajaORCID

Abstract

The world is currently faced with the depletion of fossil fuel energy sources and their use is associated with environmental pollution. This has triggered the need to seek alternative energy sources that are renewable, sustainable and environmentally benign. Biodiesel, an alternative fuel of interest, is obtainable from biomass feedstocks. In existing biodiesel fuel, there are concerns that it is a contaminant due to its elemental contents, which over time also affect its quality. This study aimed to investigate the influence of a bifunctional catalyst on the conversion of free fatty acids and the elemental composition of biodiesel obtained from waste oils of sunflower and palm feedstocks. The synthesised catalyst was characterised using BET, XRD, FTIR and SEM while ICP-OES and Rancimat were used for elemental contents and oxidation in feedstocks and biodiesels. The effect of Cu, Zn and Fe metals on the stability of synthesised biodiesel was further studied. The catalyst showed characteristics of bifunctionality with improved textural properties necessary for the conversion of high free fatty acids feedstocks to biodiesel, despite increasing Ca content within the produced biodiesel. Sunflower biodiesel showed superior fuel quality, although palm biodiesel had more oxidation stability. An increase in the concentration of metals decreased the induction period, with Cu and Fe being more effective than Zn metal.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference109 articles.

1. Energy

2. World oil outlook

3. Industrialization, Environment and Pollution;Magsi;Dipl. Insight,2015

4. Socio—Economic Effects of Industrialization in the Society;Muhammad;Int. J. Environ. Ecol. Fam. Urban. Stud.,2018

5. Trends in catalytic production of biodiesel from various feedstocks

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3