Highly Active TiO2 Photocatalysts for Hydrogen Production through a Combination of Commercial TiO2 Material Selection and Platinum Co-Catalyst Deposition Using a Colloidal Approach with Green Reductants

Author:

Schwarze Michael,Klingbeil Charly,Do Ha Uyen,Kutorglo Edith Mawunya,Parapat Riny Yolandha,Tasbihi MinooORCID

Abstract

In this contribution, four different commercial TiO2 catalysts (P25, P90, PC105, and PC500) were screened for the photocatalytic production of hydrogen using ethanol as the sacrificial agent. The physico-chemical properties of the TiO2 powders were characterized by using different methods. The photocatalysts mainly vary in the ratio of anatase and rutile phases, and in the surface area. It was found that the photocatalytic activity is governed by the surface area of the photocatalyst. Pure TiO2,PC500 showed the best performance, and in comparison to P25, the activity was more than twenty times higher due to its high surface area of about 270 m2 g−1. For further improvement of the photocatalytic activity, platinum nanoparticles (PtNPs) were immobilized onto TiO2,PC500 using two methods: a colloidal approach and a photodeposition method. For the reduction of the platinum salt precursor in the colloidal approach, different green reducing agents were used in comparison to ascorbic acid. The obtained platinum nanoparticles using natural reductants showed a higher photocatalytic activity due to the formation of smaller nanoparticles, as proven by transmission electron microscopy (TEM). The highest activity was obtained when mangosteen was used as the green reducing agent. Compared to ascorbic acid as a classical reducing agent, the photocatalytic activity of the Pt@TiO2,PC500 prepared with mangosteen was about 2–3 times higher in comparison to other as-prepared photocatalysts. The Pt@TiO2,PC500 catalyst was further studied under different operating conditions, such as catalyst and sacrificial agent concentration.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3