Abstract
The new 1D CPs [Zn(L1)(H2O)4]n.nH2O (1) and [Zn(L2)(H2O)2]n (2) [L1 = 1,1′-(ethane-1,2-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid); L2 = 1,1′-(propane-1,3-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid)] were prepared from flexible dicarboxylate pro-ligands (H2L1 and H2L2). Both CPs 1 and 2 were characterized by elemental, FTIR, and powder X-ray diffraction analysis. Their geometry and the structural features were unveiled by single-crystal X-ray diffraction analysis. The underlying topology of the CPs was illustrated by the topological analysis of the H-bonded structure of CP 1, which revealed a 3,4,6-connected trinodal net. On the other hand, topological analysis on the hydrogen-bonded network of CP 2 showed a 2,3,3,4,6,7-connected hexanodal net. The thermal stability of the CPs was investigated by thermogravimetric analysis. CPs 1 and 2 act as heterogeneous catalysts in one-pot tandem deacetalization–Knoevenagel condensation reactions under environmentally mild conditions. CPs 1 exhibits a yield of ca. 91% in a microwave-assisted solvent-free medium, whereas a slightly lower yield was obtained for CP 2 (87%) under the same experimental protocol. The recyclability of catalyst 1 was also assessed. To our knowledge, these are the first Zn(II)-based CPs to be applied as heterogeneous catalysts for the above tandem reactions under environmentally friendly conditions.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献