Abstract
The adsorption and activation of both CO2 and methanol are mainly affected by the distance of the Lewis acid site, Zr4+, and Lewis base, Zr4+/O2−, of the Zr-based catalysts. In this paper, Zr-incorporated SBA-15 (Zr-SBA-15) and Zr-grafted SBA-15 (Zr/SBA-15) catalysts were prepared with different Zr environments, and were analyzed with N2 adsorption–desorption isotherms, X-ray diffraction, UV-vis spectra, and XPS. It was proposed that Zr-SBA-15 catalyst with Si-O-Zr-OH and Zr-O-Si-OH structure exhibited non-adjacent sites between Zr4+ and Zr4+/O2−, while Zr/SBA-15 catalyst with Zr-O-Zr-OH structure showed neighboring sites between Zr4+ and Zr4+/O2−. Furthermore, the Zr/SBA-15 catalyst exhibited good catalytic activity, while no DMC was detected over the Zr-SBA-15 catalyst at the same reaction conditions. For combined in situ infrared and catalytic performance, it was indicated that the methanol and CO2 could be activated to form DMC, only when the Zr4+ and Zr4+/O2− sites existed and were adjacent to each other in the Zr-O-Zr-OH of Zr/SBA-15 catalyst.
Funder
Technology Research Project of Henan Province
the National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献