Photocatalytic Oxidation of Chlorantraniliprole, Imidacloprid, Pirimicarb, Thiamethoxam and Their Main Photoreaction InterMediates as Impacted by Water Matrix Composition under UVA-LED Exposure

Author:

Aliste Marina,Garrido Isabel,Pérez-Lucas GabrielORCID,Navarro SimónORCID,Fenoll JoséORCID

Abstract

Processes on wastewater treatment plants (WWTP) are not always efficient for pollutant removal. A new, low-cost, and effective technology is needed. In this work, the photocatalytic degradation of four insecticides, chlorantraniliprole, imidacloprid, pirimicarb, and thiamethoxam, has been examined in different water matrices (irrigation water, leaching waters, and WWTP effluent). Lab experiments were conducted with TiO2 and ZnO, as photocatalysts, with and without Na2S2O8 as an oxidant, exposed to UVA irradiation with LED lamps. Previously, different loadings of TiO2 and ZnO were assessed on the disappearance kinetics of the different insecticides to know the optimal efficiency. The effect of water matrices, susceptible to being contaminated with the target insecticides, was discussed when the photocatalytic system TiO2/Na2S2O8 was applied. The abatement of their main transformation products (TPs) was also monitored during the studied photoperiods. A total of 13 TPs were detected in the different water matrices studied. All of them were formed and eliminated during the photoperiod, except thiamethoxam urea which was present from the beginning of the experiments due to its hydrolysis in water. In conclusion, UVA-LED lamps are a good source to carry out heterogeneous photocatalysis in WWTP, since its high efficiency, low-cost, long lifetime, and effectiveness on pollutant removal.

Funder

Ministry of Science and Innovation of Spain

Agencia Estatal de Investigación

European Social Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3