Kinetics and Selectivity Study of Fischer–Tropsch Synthesis to C5+ Hydrocarbons: A Review

Author:

Teimouri Zahra,Abatzoglou NicolasORCID,Dalai Ajay K.

Abstract

Fischer–Tropsch synthesis (FTS) is considered as one of the non-oil-based alternatives for liquid fuel production. This gas-to-liquid (GTL) technology converts syngas to a wide range of hydrocarbons using metal (Fe and Co) unsupported and supported catalysts. Effective design of the catalyst plays a significant role in enhancing syngas conversion, selectivity towards C5+ hydrocarbons, and decreasing selectivity towards methane. This work presents a review on catalyst design and the most employed support materials in FTS to synthesize heavier hydrocarbons. Furthermore, in this report, the recent achievements on mechanisms of this reaction will be discussed. Catalyst deactivation is one of the most important challenges during FTS, which will be covered in this work. The selectivity of FTS can be tuned by operational conditions, nature of the catalyst, support, and reactor configuration. The effects of all these parameters will be analyzed within this report. Moreover, zeolites can be employed as a support material of an FTS-based catalyst to direct synthesis of liquid fuels, and the specific character of zeolites will be elaborated further. Furthermore, this paper also includes a review of some of the most employed characterization techniques for Fe- and Co-based FTS catalysts. Kinetic study plays an important role in optimization and simulation of this industrial process. In this review, the recent developed reaction rate models are critically discussed.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3