The Effect of ZrO2 as Different Components of Ni-Based Catalysts for CO2 Reforming of Methane and Combined Steam and CO2 Reforming of Methane on Catalytic Performance with Coke Formation

Author:

Sumarasingha Wassachol,Supasitmongkol Somsak,Phongaksorn Monrudee

Abstract

The role of ZrO2 as different components in Ni-based catalysts for CO2 reforming of methane (CRM) has been investigated. The 10 wt.% Ni supported catalysts were prepared with ZrO2 as a support using a co-impregnation method. As a promoter (1 wt.% ZrO2) and a coactive component (10 wt.% ZrO2), the catalysts with ZrO2 were synthesized using a co-impregnation method. To evaluate the effect of the interaction, the Ni catalyst with ZrO2 as a coactive component was prepared by a sequential impregnation method. The results revealed that the activity, the selectivity, and the anti-coking ability of the catalyst depend upon the ZrO2 content, the Ni-ZrO2 interaction, basicity, and oxygen mobility of each catalyst resulting in different Ni dispersion and oxygen transfer pathway from ZrO2 to Ni. According to the characterization and catalytic activation results, the Ni catalyst with low ZrO2 content (as a promoter) presented highest selectivity toward CO owning to the high number of weak and moderate basic sites that enhance the CO2 activation-dissociation. The lowest activity (CH4 conversion ≈ 40% and CO2 conversion ≈ 39%) with the relatively high quantity of total coke formation (the weight loss of the spent catalyst in TGA curve ≈ 22%) of the Ni catalyst with ZrO2 as a support is ascribed to the lowest Ni dispersion due to the poor Ni-ZrO2 interaction and less oxygen transfer from ZrO2 to the deposited carbon on the Ni surface. The effect of a poor Ni-ZrO2 interaction on the catalytic activity was deducted by decreasing ZrO2 content to 10 wt.% (as a coactive component) and 1 wt.% (as a promoter). Although Ni catalysts with 1 wt.% and 10 wt.% ZrO2 provided similar oxygen mobility, the lack of oxygen transfer to coke during CRM process on the Ni surface was still indicated by the growth of carbon filament when the catalyst was prepared by co-impregnation method. When the catalyst was prepared by a sequential impregnation, the intimate interaction of Ni and ZrO2 for oxygen transfer was successfully developed through a ZrO2-Al2O3 composite. The interaction in this catalyst enhanced the catalytic activity (CH4 conversion ≈ 54% and CO2 conversion ≈ 50%) and the oxygen transport for carbon oxidation (the weight loss of the spent catalyst in TGA curve ≈ 7%) for CRM process. The Ni supported catalysts with ZrO2 as a promoter prepared by co-impregnation and with ZrO2 as a coactive component prepared by a sequential impregnation were tested in combined steam and CO2 reforming of methane (CSCRM). The results revealed that the ZrO2 promoter provided a greater carbon resistance (coke = 1.213 mmol·g−1) with the subtraction of CH4 and CO2 activities (CH4 conversion ≈ 28% and CO2 conversion ≈ %) due to the loss of active sites to the H2O activation-dissociation. Thus, the H2O activation-dissociation was promoted more efficiently on the basic sites than on the vacancy sites in CSCRM.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3