Study on the Development of High-Performance P-Mo-V Catalyst and the Influence of Aldehyde Impurities on Catalytic Performance in Selective Oxidation of Methacrolein to Methacrylic Acid

Author:

Wang Baohe,Dong Honggang,Lu Liang,Liu Hongxia,Zhang Zhaobang,Zhu JingORCID

Abstract

A series of KxH1.1-xCu0.2Cs1(NH4)1.5PVMo11O40 (KxCuCsNH4PVA) catalysts with different x values were synthesized to catalyze the selective oxidation of methacrolein (MAL) to methacrylic acid (MAA). The effects of potassium (K) ions on both the structure and catalytic activity were studied in detail. The optimum K0.6CuCsNH4PVA exhibited a large surface area, more acid sites, and abundant active species (V4+/VO2+) in the secondary structure of the Keggin structure, consequently offering good catalytic performance. Furthermore, K ions increased the MAA selectivity at the expense of carbon monoxide and carbon dioxide (together defined as COX). Additionally, several process parameters for MAL oxidation were evaluated in the processing experiments. The effects of aldehyde impurities (formaldehyde and propanal) on the catalytic performance were investigated. Possible detrimental effects (catalyst poisoning and structural damage) of aldehyde impurities were excluded. A light decrease in MAL conversion could be attributed to the competitive adsorption of aldehyde impurities and MAL on the catalyst. Hopefully, this work contributes to the design of stable and feasible catalysts for the industrial production of MAA.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3