Exploring the Stability of Fe–Ni Alloy Nanoparticles Exsolved from Double-Layered Perovskites for Dry Reforming of Methane

Author:

Carrillo Alfonso J.ORCID,Serra José ManuelORCID

Abstract

Exsolution is emerging as a promising route for the creation of nanoparticles that remain anchored to the oxide support, imparting remarkable stability in high temperature chemical processes such as dry reforming of methane. This process takes place at temperatures around 850 °C, which causes sintering-related issues in catalysts prepared using conventional impregnation methods, which could be overcome by using exsolution functionalized oxides. In this work, FeNi3 alloy nanoparticles exsolved from Sr2FexNi1-xMoO6-δ double-layered perovskites were evaluated as a dry reforming catalyst, paying special attention to structure–activity relationships. Our results indicate that increasing the Ni content favors the nanoparticle dispersion, eventually leading to increased CO2 and CH4 conversions. The exsolved nanoparticles presented remarkable nanoparticle size (ca. 30 nm) stability after the 10 h treatment, although the formation of some phase segregations over the course of the reaction caused a minor decrease in the nanoparticle population. Overall, the results presented here serve as materials processing guidelines that could find further potential use in the design of more efficient (electro)catalysts in other fuel production or energy conversion technologies.

Funder

la Caixa Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3