Catalytic Effect of 1,4-Dioxane on the Kinetics of the Oxidation of Iodide by Dicyanobis(bipyridine)iron(III) in Water

Author:

Khattak RozinaORCID,Khan Muhammad Sufaid,Iqbal ZahoorORCID,Ullah Rizwan,Khan AbbasORCID,Summer Shazia,Noreen Hamsa,Zahoor MuhammadORCID,El-Bahy Salah M.,Batiha Gaber El-SaberORCID

Abstract

Dye-sensitized solar cells (DSSCs) are a technically and financially viable alternative to today’s photovoltaic systems using p-n junctions. The two functions are isolated here, which are unlike traditional systems where the semiconductor is thought to perform both light absorption and charge carrier transport. This article discusses the potential use of dicyanobis(bipyridine)iron(III) to oxidize iodide as a sensitizer in DSSCs. However, it is critical to understand the kinetics of this essential process in order to understand the mechanism of electron transport. The oxidation of iodide by dicyanobis(bipyridine)iron(III) in three reaction media was studied: water, 10% v/v 1,4-dioxane-water, and 20% v/v 1,4-dioxane-water. The reaction was carried out in a regular laboratory setting, with no special sensitive conditions or the use of expensive materials, making it a cost-effective and practical method. Dicyanobis(bipyridine)iron(III) oxidized iodide in selected media at 0.06 M ionic strength and constant temperature. The reaction was subjected to a spectrophotometric analysis. The data were acquired by measuring the rise in visible absorbance as a function of time after the formation of dicyanobis(bipyridine)iron(II). The reaction proceeded with an overall fractional (0.5), first order, and third order in water, 10% media, and 20% media, respectively. The presence of dicyanobis(bipyridine)iron(III) in either of the reaction media had no effect on the rate. The effect of protons (H+) on the rate constant indicated resistance in water and catalysis in dioxane-water media containing 10–20% dioxane. When the ionic strength was raised, there was no change in the rate constant in water, but there was a deceleration in both binary solvent media. In an aqueous medium, the thermodynamic parameters of activation were computed as Ea 46.23 kJ mol−1, 24.62 M s−1, ΔH# 43.76 kJ mol−1, ΔS# −226.5 J mol−1 K−1, and ΔG# 111.26 kJ mol−1 (25 °C). By increasing the rate of the reaction to its maximum, this study discovered the binary solvent media with the highest catalytic efficiency, i.e., 20% v/v 1,4-dioxane-water, which may increase the efficiency of DSSCs without using any expensive material or unusual experimental conditions.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference67 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3