Mechanism of Guaiacol Hydrodeoxygenation on Cu (111): Insights from Density Functional Theory Studies

Author:

Konadu Destiny,Kwawu Caroline Rosemyya,Tia Richard,Adei Evans,de Leeuw Nora HenrietteORCID

Abstract

Understanding the mechanism of the catalytic upgrade of bio-oils via the process of hydrodeoxygenation (HDO) is desirable to produce targeted oxygen-deficient bio-fuels. We have used calculations based on the density functional theory to investigate the reaction mechanism of HDO of guaiacol over Cu (111) surface in the presence of H2, leading to the formation of catechol and anisole. Our analysis of the thermodynamics and kinetics involved in the reaction process shows that catechol is produced via direct demethylation, followed by dehydrogenation of –OH and re-hydrogenation of catecholate in a concerted fashion. The de-methylation step is found to be the rate-limiting step for catechol production with a barrier of 1.97 eV. Formation of anisole will also proceed via the direct dehydroxylation of guaiacol followed by hydrogenation. Here, the rate-limiting step is the dehydroxylation step with an energy barrier of 2.07 eV. Thermodynamically, catechol formation is favored while anisole formation is not favored due to the weaker interaction seen between anisole and the Cu (111) surface, where the binding energies of guaiacol, catechol, and anisole are -1.90 eV, −2.18 eV, and −0.72 eV, respectively. The stepwise barriers also show that the Cu (111) surface favors catechol formation over anisole as the rate-limiting barrier is higher for anisole production. For catechol, the overall reaction is downhill, implying that this reaction path is thermodynamically and kinetically preferred and that anisole, if formed, will more easily transform.

Funder

Leverhulme - Royal Society

The World Academy of Sciences

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3