Enhancing CO2 Conversion to CO over Plasma-Deposited Composites Based on Mixed Co and Fe Oxides

Author:

Kierzkowska-Pawlak HannaORCID,Ryba Małgorzata,Fronczak MaciejORCID,Kapica RyszardORCID,Sielski Jan,Sitarz MaciejORCID,Zając Patryk,Łyszczarz Klaudia,Tyczkowski JacekORCID

Abstract

The hydrogenation of CO2 to produce CO and H2O, known as reverse-water-gas shift reaction (RWGS) is considered to be an important CO2 valorization pathway. This work is aimed at proposing the thin-film catalysts based on iron and cobalt oxides for this purpose. A series of Fe–Co nanocomposites were prepared by the plasma-enhanced chemical vapor deposition (PECVD) from organic cobalt and iron precursors on a wire-mesh support. The catalysts were characterized by SEM/EDX, XPS, XRD, and Raman spectroscopy and studied for hydrogenation of CO2 in a tubular reactor operating in the temperature range of 250–400 °C and atmospheric pressure. The Co-based catalyst, containing crystalline CoO phase, exhibited high activity toward CH4, while the Fe-based catalyst, containing crystalline Fe2O3/Fe3O4 phases, was less active and converted CO2 mainly into CO. Regarding the Fe–Co nanocomposites (incl. Fe2O3/Fe3O4 and CoO), even a small fraction of iron dramatically inhibited the production of methane. With increasing the atomic fraction of iron in the Fe–Co systems, the efficiency of the RWGS reaction at 400 °C increased up to 95% selectivity to CO and 30% conversion of CO2, which significantly exceeded the conversion for pure iron–based films (approx. 9%). The superior performance of the Fe–Co nanocomposites compared to “pure” Co and Fe–based films was proposed to be explained by assuming changes in the electronic structure of the catalyst resulting from the formation of p–n junctions between nanoparticles of cobalt and iron oxides.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3