Electrocatalytic Properties of Co Nanoconical Structured Electrodes Produced by a One-Step or Two-Step Method

Author:

Skibinska KatarzynaORCID,Kolczyk-Siedlecka KarolinaORCID,Kutyla DawidORCID,Jedraczka Anna,Leszczyńska-Madej BeataORCID,Marzec Mateusz M.,Zabinski PiotrORCID

Abstract

One-dimensional (1D) nanostructures, such as nanotubes, nanopores, nanodots and nanocones, are characterized by better catalytic properties than bulk material due to their large active surface area and small geometrical size. These structures can be produced by several methods of synthesis including the one- and two-step methods. In the one-step method, a crystal modifier is added to the solution in order to limit the horizontal direction of structures growing during electrodeposition. In this work, NH4Cl was used as a crystal modifier. Another way of production of 1D nanocones is the electrodeposition of metal in porous anodic alumina oxide (AAO) templates, called the two-step method. In this case, the AAO template was obtained using a two-step anodization process. Nanocones obtained by the two-step method show smaller geometrical size. In this work, cobalt nanoconical structures were obtained from an electrolyte containing CoCl2 and H3BO3. The electrocatalytic properties of materials fabricated by one-step and two-step methods were measured in 1 M NaOH and compared with bulk material electrodeposited from the same electrolyte. There were several microshell structures in the case of Co deposits obtained by the one-step method. To solve this problem, different conditions of synthesis Co cones by the one-step method were applied. The electrocatalytic activity of these samples was checked as well.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3